Ductility

With respect to punched metal plate fastener joints. (Trondheim)

Typical punched metal plate fastener.

Tests determine:Anchorage capacityTension capacityTension capacityCompression capacityShear capacity.

EN 1075 defines two important angles in relation to test specimen geometry

- α = Angle of load with respect to the major axis of the fastener.
- β = Angle of load with respect to the timber grain direction.

Anchorage 0/0

Tension 0/0

Compression 90/0

Shear 90/0

According to section 3.7 of EN 12512:1991 ductility is measured as the ratio between ultimate slip V_u and the yield slip V_v .

$$D = V_u/V_y$$

EN 12512 definition of ultimate displacement V_u

EN 12512 definition of yield displacement V_y curves without two well defined linear portions

Some results

Anchorage		Tensio	Tension		Shear	
α/β	D	α/β	D		α	D
0/0	4.2	0/0	10.7		0	12.8
30/0	5.8	45/0	17+		15	14.1
60/0	4.3	90/0	9.3		30	10.0
90/0	6.7				45	8.2
0/30	4.3	Comp	Compression		60	8.8
0/60	4.1	α/β	D		75	22.5
0/90	8.4	0/0	9.6		90	20+
45/90	5.4	45/0	7.4		105	20+
90/90	11.4	90/0	4.7		120	9.1
					135	33

150 32

165 43

Some results

Anchorage		Tensio	Tension		Shear	
α/β	D	α/β	D	α	D	
0/0	4.2	0/0	10.7	0	12.8	
30/0	5.8	45/0	17+	15	14.1	
60/0	4.3	90/0	9.3	30	10.0	
90/0	6.7			45	8.2	
0/30	4.3	Comp	Compression		8.8	
0/60	4.1	α/β	D	75	22.5	
0/90	8.4	0/0	9.6	90	20+	
45/90	5.4	45/0	7.4	105	20+	
90/90	11.4	90/0	4.7	120	9.1	
				135	33	

150 32165 43

Concluding thoughts

- The results presented here are incomplete and provisional but appear to indicate that load/slip characteristics which look very different can produce similar ductility numbers
- Is ductility a sufficiently discerning characteristic for use in reliability studies?